Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 49, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594770

RESUMO

Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.


Assuntos
Infecções por Flavobacteriaceae , Meningite , Doenças das Aves Domésticas , Riemerella , Animais , Barreira Hematoencefálica/metabolismo , Patos/metabolismo , Virulência , Fatores de Virulência/metabolismo , Ocludina/genética , Ocludina/metabolismo , Infecções por Flavobacteriaceae/veterinária , Riemerella/metabolismo , Meningite/veterinária , Colágeno/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Vet Microbiol ; 280: 109700, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807978

RESUMO

Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. We previously reported that the R. anatipestifer AS87_RS02625 is a secretory protein of the type IX secretion system (T9SS). In this study, R. anatipestifer T9SS protein AS87_RS02625 was determined to be a functional Endonuclease I (EndoI), which has DNase and RNase activities. Optimal temperature and pH of the recombinant R. anatipestifer EndoI (rEndoI) to cleave λDNA were determined as 55-60 °C and 7.5 respectively. The DNase activity of the rEndoI was dependent on the presence of divalent metal ions. Presence of Mg2+ at a concentration range of 7.5-15 mM in the rEndoI reaction buffer displayed the highest DNase activity. In addition, the rEndoI displayed RNase activity to cleave MS2-RNA (ssRNA), either in the absence or presence of divalent cations Mg2+, Mn2+, Ca2+, Zn2+ and Cu2+. The DNase activity of the rEndoI was significantly enhanced by Mg2+, Mn2+ and Ca2+ but not Zn2+ and Cu2+. Moreover, we indicated that R. anatipestifer EndoI functioned on the bacterial adherence, invasion, in vivo survival and inducing inflammatory cytokines. These results indicate that the R. anatipestifer T9SS protein AS87_RS02625 is a novel EndoI, displays endonuclease activity and plays an important role in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/metabolismo , Patos/microbiologia , Ribonucleases/metabolismo , Doenças das Aves Domésticas/microbiologia , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia
3.
Vet Microbiol ; 276: 109628, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508857

RESUMO

Riemerella anatipestifer secretes proteins through the type IX secretion system (T9SS). Recent studies have shown that the R. anatipestifer T9SS component proteins GldM and GldK also act as crucial virulence factors. In our previous study, the disruption of AS87_RS00460 gene, which encodes the predicted protein GldG, significantly reduced the bacterial virulence of R. anatipestifer wild-type strain Yb2, but the mechanism was unclear. In this study, we investigated the function of the GldG in bacterial virulence and protein secretion using the mutant strain Yb2ΔgldG and complementation strain cYb2ΔgldG. Our results demonstrate that the gldG gene encodes a gliding-motility-associated ABC transporter substrate-binding protein GldG, which was localized to the bacterial membrane in an immunoblotting analysis, and functions in the bacterium's adherence to and invasion of host cells and its survival in host blood. The resistance of mutant strain Yb2ΔgldG to complement-dependent killing was significantly reduced. Yb2ΔgldG displayed reduced gliding motility and deficient protein secretion. Label-free quantification (LFQ) with liquid chromatography-mass spectrometry (LC-MS) showed that 10 proteins with a conserved T9SS C-terminal domain were differentially secreted by Yb2ΔgldG and Yb2. The secretion levels of those 10 proteins were determined with immunoblotting, and the results were consistent with the LFQ LC-MS data. All of these effects were rescued by complementation with a plasmid encoding Yb2 gldG. Our results demonstrate that the R. anatipestifer gldG gene encodes the protein GldG, which is involved in bacterial virulence and protein secretion.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Doenças das Aves Domésticas/microbiologia , Patos/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Appl Environ Microbiol ; 88(19): e0127622, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106871

RESUMO

Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxirribonucleases/metabolismo , Patos/microbiologia , Ácido Edético , Endonucleases/genética , Endonucleases/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , RNA/metabolismo , Ribonucleases/metabolismo , Riemerella/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
J Bacteriol ; 204(7): e0007322, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35670588

RESUMO

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Patos/metabolismo , Patos/microbiologia , Peptídeo Hidrolases/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Appl Environ Microbiol ; 88(11): e0240921, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35575548

RESUMO

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Bacitracina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Patos/microbiologia , Fibrinogênio/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Gelatina/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Serina , Subtilisinas/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
J Bacteriol ; 203(15): e0018121, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33972354

RESUMO

Biotin is essential for the growth and pathogenicity of microorganisms. Damage to biotin biosynthesis results in impaired bacterial growth and decreased virulence in vivo. However, the mechanisms of biotin biosynthesis in Riemerella anatipestifer remain unclear. In this study, two R. anatipestifer genes associated with biotin biosynthesis were identified. AS87_RS05840 encoded a BirA protein lacking the N-terminal winged helix-turn-helix DNA binding domain, identifying it as a group I biotin protein ligase, and AS87_RS09325 encoded a BioX protein, which was in the helix-turn-helix xenobiotic response element family of transcription factors. Electrophoretic mobility shift assays demonstrated that BioX bound to the promoter region of bioF. In addition, the R. anatipestifer genes bioF (encoding 7-keto-8-aminopelargonic acid synthase), bioD (encoding dethiobiotin synthase), and bioA (encoding 7,8-diaminopelargonic acid synthase) were in an operon and were regulated by BioX. Quantitative reverse transcription-PCR showed that transcription of the bioFDA operon increased in the mutant Yb2ΔbioX in the presence of excessive biotin, compared with that in the wild-type strain Yb2, suggesting that BioX acted as a repressor of biotin biosynthesis. Streptavidin blot analysis showed that BirA caused biotinylation of BioX, indicating that biotinylated BioX was involved in metabolic pathways. Moreover, as determined by the median lethal dose, the virulence of Yb2ΔbioX was attenuated 500-fold compared with that of Yb2. To summarize, the genes birA and bioX were identified in R. anatipestifer, and BioX was found to act as a repressor of the bioFDA operon involved in the biotin biosynthesis pathway and identified as a bacterial virulence factor. IMPORTANCE Riemerella anatipestifer is a causative agent of diseases in ducks, geese, turkeys, and various other domestic and wild birds. Our study reveals that biotin synthesis of R. anatipestifer is regulated by the BioX through binding to the promoter region of the bioF gene to inhibit transcription of the bioFDA operon. Moreover, bioX is required for R. anatipestifer pathogenicity, suggesting that BioX is a potential target for treatment of the pathogen. R. anatipestifer BioX has thus been identified as a novel negative regulator involved in biotin metabolism and associated with bacterial virulence in this study.


Assuntos
Proteínas de Bactérias/metabolismo , Biotina/biossíntese , Infecções por Flavobacteriaceae/veterinária , Regulação Bacteriana da Expressão Gênica , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Patos , Infecções por Flavobacteriaceae/microbiologia , Gansos , Óperon , Regiões Promotoras Genéticas , Conformação Proteica em alfa-Hélice , Riemerella/genética , Riemerella/patogenicidade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Perus , Virulência
8.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741629

RESUMO

Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that bacterial virulence and secretion proteins of the type IX secretion system (T9SS) mutant strains Yb2ΔgldK and Yb2ΔgldM were significantly reduced, in comparison to those of wild-type strain Yb2. In this study, the T9SS secretion protein AS87_RS00980, which is absent from the secretion proteins of Yb2ΔgldK and Yb2ΔgldM, was investigated by construction of gene mutation and complementation strains. The virulence assessment showed >1,000-fold attenuated virulence and significantly reduced bacterial loads in the blood of ducks infected with Yb2Δ00980, the AS87_RS00980 gene deletion mutant strain. Bacterial virulence was recovered in complementation strain cYb2Δ00980 Further study indicated that the T9SS secretion protein AS87_RS00980 is a metallophosphoesterase (MPPE), which displayed phosphatase activity and was cytomembrane localized. Moreover, the optimal reactive pH and temperature were determined to be 7.0 and 60°C, respectively, and the Km and Vmax were determined to be 3.53 mM and 198.1 U/mg. The rMPPE activity was activated by Zn2+ and Cu2+ but inhibited by Fe3+, Fe2+, and EDTA. There are five conserved sites, namely, N267, H268 H351, H389, and H391, in the metallophosphatase domain. Mutant proteins Y267-rMPPE and Y268-rMPPE retained 29.30% and 19.81% relative activity, respectively, and mutant proteins Y351-rMPPE, Y389-rMPPE, and Y391-rMPPE lost almost all MPPE activity. Taken together, these results indicate that the R. anatipestiferAS87_RS00980 gene encodes an MPPE that is a secretion protein of T9SS that plays an important role in bacterial virulence.IMPORTANCERiemerella anatipestifer T9SS was recently discovered to be associated with bacterial gliding motility and secretion of virulence factors. Several T9SS genes have been identified, but no effector has been reported in R. anatipestifer to date. In this study, we identified the T9SS secretion protein AS87_RS00980 as an MPPE that displays phosphatase activity and is associated with bacterial virulence. The enzymatic activity of the rMPPE was determined, and the Km and Vmax were 3.53 mM and 198.1 U/mg, respectively. Five conserved sites were also identified. The AS87_RS00980 gene deletion mutant strain was attenuated >1,000-fold, indicating that MPPE is an important virulence factor. In summary, we identified that the R. anatipestiferAS87_RS00980 gene encodes an important T9SS effector, MPPE, which plays an important role in bacterial virulence.


Assuntos
Proteínas de Bactérias/genética , Riemerella/genética , Riemerella/patogenicidade , Proteínas de Bactérias/metabolismo , Riemerella/enzimologia , Virulência
9.
Poult Sci ; 99(10): 4741-4749, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988508

RESUMO

Riemerella anatipestifer is one of the major bacterial pathogens of ducks and causes significant economic losses in poultry agriculture. Usually, methods for detecting R. anatipestifer infection need specialized equipment and highly skilled personnel. In this study, a novel colloidal gold immunochromatographic strip was developed for rapid detection of R. anatipestifer in ducks. The monoclonal antibodies 2D5 and 2A6 against R. anatipestifer were used as colloidal gold-labeled protein and capture protein, respectively, to recognize the bacteria in tryptic soy broth medium culture and in hearts of infected ducks. The goat anti-mouse IgG antibody was labeled on nitrocellulose membrane as a control for C line. The labeling pH was optimized as 10.0, and the concentration of 2D5 labeled to colloidal gold particles was optimized as 18 µg/mL. The strip specifically detected serotypes 1, 2, and 10 R. anatipestifer strains and showed no cross-reaction with Escherichia coli, Salmonella enterica, and Pasteurella multocida strains. The sensitivity of the strip for detecting R. anatipestifer was 1.0 × 106 colony forming unit. The strips remained stable for up to 8 mo at 4°C, and the detection can be completed within 15 min. The strip can detect R. anatipestifer in hearts of the ducks experimentally infected with R. anatipestifer but not infected with E. coli, which were also confirmed with bacterial isolation followed by multiplex polymerase chain reaction. These results suggested that the strips are reliable methods for identification of R. anatipestifer in laboratories and in duck farms.


Assuntos
Patos , Infecções por Flavobacteriaceae , Coloide de Ouro , Imunoensaio , Doenças das Aves Domésticas , Riemerella , Animais , Infecções por Flavobacteriaceae/diagnóstico , Imunoensaio/veterinária , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/microbiologia
10.
J Orthop Surg Res ; 15(1): 143, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293484

RESUMO

OBJECTIVE: Evidence suggests that microRNAs (miRNAs) regulate the expression of genes involved in bone metabolism. This study aimed to investigate the role of miR-505 in the osteogenic differentiation of MC3T3-E1 cells. METHODS: We performed miRNA sequencing to identify differentially expressed miRNAs between MC3T3-E1 cells treated with osteogenic induction medium (OIM) and control cells. Bioinformatics analysis was performed by using the TargetScan and miRDB databases. The expression of miR-505 in MC3T3-E1 cells was detected during osteogenic differentiation. After transfection with miR-505 mimic or miR-505 inhibitor, MC3T3-E1 cells were induced to differentiate into osteoblasts, and the expression of osteogenic differentiation markers (Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), and osterix (OSX)) was detected. RESULTS: miR-505 was the most downregulated miRNA among the differentially expressed miRNAs. The RUNX2 gene was identified as a potential target of miR-505 using the target prediction program. miR-505 expression was downregulated during osteogenic differentiation of MC3T3-E1 cells. The expression of osteogenic marker genes was inhibited in MC3T3-E1 cells after transfection with miR-505. However, the expression of osteogenic marker genes was upregulated after transfection with miR-505 inhibitor. CONCLUSION: This study is the first to report miR-505 could bind to the RUNX2 gene and thus regulate partly the dysfunction of osteoblasts differentiation, which is expected to be targets for the treatment of osteoporosis.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/metabolismo , Osteogênese/fisiologia , Células-Tronco/metabolismo , Animais , Linhagem Celular , Biologia Computacional/métodos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , MicroRNAs/genética , Ligação Proteica/fisiologia
11.
Vet Res ; 50(1): 43, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164171

RESUMO

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Genetic analyses suggest that this pathogen has a novel protein secretion system, known as the "type IX secretion system" (T9SS). We previously reported that deletion of the AS87_RS08465 gene significantly reduced the bacterial virulence of the R. anatipestifer strain Yb2, but the mechanism remained unclear. The AS87_RS08465 gene is predicted to encode the gliding motility protein GldM (GldM) protein, a key component of the T9SS complex. In this study, Western blotting analysis demonstrated that R. anatipestifer GldM was localized to the cytomembrane. Further study revealed that the adhesion and invasion capacities of the mutant strain RA2281 (designated Yb2ΔgldM) in Vero cells and the bacterial loads in the blood of infected ducks were significantly reduced. RNA-Seq and PCR analyses showed that six genes were upregulated and five genes were downregulated in the mutant strain Yb2ΔgldM and that these genes were mainly involved in the secretion of proteins. Yb2ΔgldM was also found to be defective in gliding motility and protein secretion. Liquid chromatography-tandem mass spectrometry analysis revealed that nine of the proteins had a conserved T9SS C-terminal domain and were differentially secreted by Yb2ΔgldM compared to Yb2. The complementation strain cYb2ΔgldM recovered the adhesion and invasion capacities in Vero cells and the bacterial loads in the blood of infected ducks as well as the bacterial gliding motility and most protein secretion in the mutant strain Yb2ΔgldM to the levels of the wild-type strain Yb2. Taken together, these results indicate that R. anatipestifer GldM is associated with T9SS and is important in bacterial virulence.


Assuntos
Aderência Bacteriana/genética , Expressão Gênica , Riemerella/genética , Riemerella/patogenicidade , Sistemas de Secreção Tipo IV/genética , Mutação , Peptídeo Hidrolases/biossíntese , Riemerella/enzimologia , Sistemas de Secreção Tipo IV/metabolismo , Virulência/genética , Fatores de Virulência/genética
12.
Vet Microbiol ; 231: 93-99, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955831

RESUMO

Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that the deletion of the AS87_08785 gene significantly reduced the virulence of R. anatipestifer strain Yb2, but the mechanism remained unclear. In this study, R. anatipestifer strains with mutated or complemented AS87_08785 genes were constructed and characterized. A sequence analysis indicated that the AS87_08785 gene encoded a putative GldK protein, which localized to the membrane fraction in a western blotting analysis. The mutant strain Yb2ΔgldK displayed defective gliding motility on agar plates, reduced protease activity, and a reduced capacity for protein secretion. RNA sequencing and quantitative PCR analyses indicated that the transcription of 13 genes was downregulated in mutant Yb2ΔgldK. Animal experiments showed that the bacterial loads in the blood of Yb2ΔgldK-infected ducks were significantly reduced relative to those in wild-type strain Yb2 infected ducks. Most of the defective biological properties of the mutant were restored in complementation strain cYb2ΔgldK. Our results demonstrated that R. anatipestifer gene AS87_08785 encoded a component of the type IX secretion system, GldK, which functioned in bacterial gliding motility, protein secretion, and bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , Riemerella/genética , Sistemas de Secreção Tipo IV/genética , Animais , Aderência Bacteriana , Carga Bacteriana , Patos/microbiologia , Expressão Gênica , Mutação , Peptídeo Hidrolases/biossíntese , Reação em Cadeia da Polimerase , Riemerella/enzimologia , Análise de Sequência de RNA , Sistemas de Secreção Tipo IV/metabolismo , Virulência/genética , Fatores de Virulência/genética
13.
Sci Rep ; 8(1): 14645, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279476

RESUMO

Riemerella anatipestifer is a bacterial pathogen responsible for major economic losses within the duck industry. Recent studies have revealed that biotin biosynthesis is critical for the bacterium's survival and virulence. We previously found that R. anatipestifer AS87_RS09170, a putative bioF gene, is important for bacterial virulence. In the present study, we characterized the AS87_RS09170 gene in R. anatipestifer strain Yb2. Sequence analysis indicated that the AS87_RS09170 gene is highly conserved among R. anatipestifer strains; the deduced protein harbored the conserved pyridoxal 5'-phosphate binding pocket of 8-amino-7-oxononanoate synthase. Western blot analysis demonstrated that the biotin-dependent enzyme was present in smaller quantities in the mutant strain Yb2ΔbioF compared to that of the wide-type strain Yb2, suggesting that the biotin biosynthesis was defective. The mutant strain Yb2ΔbioF displayed a decreased growth rate at the exponential phase in tryptic soy broth culture and in BeaverBeads Streptavidin treated tryptic soy broth culture, but recovered when biotin was supplemented. In addition, the mutant strain Yb2ΔbioF showed an enhanced biofilm formation, as well as increased adhesion and invasion capacities to duck embryo fibroblasts. Moreover, the mutant strain Yb2ΔbioF exhibited irregular shapes with budding vegetations and relatively thickened cell walls under scanning and transmission electron microscope observation, as well as a reduced capacity to establish systemic infection in a duck infection model. These results provide the first evidence that the R. anatipestifer AS87_RS09170 gene is responsible for biotin synthesis, bacterial morphology and virulence.


Assuntos
Biotina/biossíntese , Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , Riemerella/genética , Riemerella/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Biotina/genética , Patos/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...